Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of Cystic Fibrosis ; 21(Supplement 2):S258, 2022.
Article in English | EMBASE | ID: covidwho-2313250

ABSTRACT

Background: Air-liquid interface (ALI) and organoid culture are key techniques for differentiating human airway epithelial cells (HAECs). The efficiency and robustness of these assays often depends on the quality of primary-isolated cells, but primary cell isolation workflows, with which the user controls the choice of isolation method, cell culture medium, and culture format, may reduce reproducibility. Therefore, an optimized, standardized workflow can enhance and support isolation of epithelial cells from diseased donors with potentially rare cystic fibrosis (CF) mutations or particularly sensitive cell populations. We have developed a standardized workflow for isolation and culture of freshly derived airway epithelial cells. Method(s): Briefly, HAECs isolated from primary tissue were expanded in PneumaCult-Ex Plus Medium for 1 week and then seeded into Corning Transwell inserts and expanded until confluency. The cells were then differentiated in PneumaCult-ALI Medium for at least 4 weeks. To assess differentiation efficiency in ALI culture, the cells were immunostained to detect Muc5AC, acetylated tubulin, and ZO-1 to identify goblet cells, ciliated cells, and apical tight junctions, respectively, aswell as SARS-CoV-2 cell entry targets angiotensin-converting enzyme 2 and transmembrane serine protease 2. Ion transport and barrier function of the ALI culturesand response to CF transmembrane conductance regulator (CFTR) correctors were also measured. In addition, freshly derived HAECs were seeded into Corning Matrigel domes in the presence of PneumaCult Airway Organoid Seeding Medium. Oneweek later, the mediumwas changed to PneumaCult Airway Organoid Differentiation Medium and maintained for an additional 3 weeks to promote cell differentiation. These airway organoids were then treated with CFTR corrector VX-809 for 24 hours, followed by 6-hour treatment with amiloride, forskolin, and genistein to induce organoid swelling. Result(s): Our results demonstrate that ALI cultures derived from CF donors displayed partial rescue of CFTR across multiple passages after treatment with VX-809. Airway organoids were found to express functional CFTR, as evidenced by forskolin treatment, which induced a 64 +/- 14% (n = 1 donor) greater organoid area than in vehicle control-treated airway organoids. Airway organoids derived from CF donors displayed a loss of forskolininduced swelling, which could be partially re-established with VX-809 treatment (29 +/- 9%, n = 3). Conclusion(s): In summary, the PneumaCult workflow supports robust, efficient culture of primary-airway epithelial cells that can be used as physiologically relevant models suitable for CF research, CFTR corrector screening, and studying airway biology.Copyright © 2022, European Cystic Fibrosis Society. All rights reserved

2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2032988

ABSTRACT

The coronavirus E proteins are small membrane proteins found in the virus envelope of alpha and beta coronaviruses that have a high degree of overlap in their biochemical and functional properties despite minor sequence variations. The SARS-CoV-2 E is a 75-amino acid transmembrane protein capable of acting as an ion channel when assembled in a pentameric fashion. Various studies have found that hexamethylene amiloride (HMA) can inhibit the ion channel activity of the E protein in bilayers and also inhibit viral replication in cultured cells. Here, we use the available structural data in conjunction with homology modelling to build a comprehensive model of the E protein to assess potential binding sites and molecular interactions of HMA derivatives. Furthermore, we employed an iterative cycle of molecular modelling, extensive docking simulations, molecular dynamics and leveraging steered molecular dynamics to better understand the pore characteristics and quantify the affinity of the bound ligands. Results from this work highlight the potential of acylguanidines as blockers of the E protein and guide the development of subsequent small molecule inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Amiloride/analogs & derivatives , Amiloride/pharmacology , Amino Acids , Humans , Ion Channels/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation
3.
Comput Struct Biotechnol J ; 20: 2082-2090, 2022.
Article in English | MEDLINE | ID: covidwho-1803848

ABSTRACT

Tumor necrosis factor (TNF) is a homotrimer that has two spatially distinct binding regions, three lectin-like domains (LLD) at the TIP of the protein and three basolaterally located receptor-binding sites, the latter of which are responsible for the inflammatory and cell death-inducing properties of the cytokine. Solnatide (a.k.a. TIP peptide, AP301) is a 17-mer cyclic peptide that mimics the LLD of human TNF which activates the amiloride-sensitive epithelial sodium channel (ENaC) and, as such, recapitulates the capacity of TNF to enhance alveolar fluid clearance, as demonstrated in numerous preclinical studies. TNF and solnatide interact with glycoproteins and these interactions are necessary for their trypanolytic and ENaC-activating activities. In view of the crucial role of ENaC in lung liquid clearance, solnatide is currently being evaluated as a novel therapeutic agent to treat pulmonary edema in patients with moderate-to-severe acute respiratory distress syndrome (ARDS), as well as severe COVID-19 patients with ARDS. To facilitate the description of the functional properties of solnatide in detail, as well as to further target-docking studies, we have analyzed its folding properties by NMR. In solution, solnatide populates a set of conformations characterized by a small hydrophobic core and two electrostatically charged poles. Using the structural information determined here and also that available for the ENaC protein, we propose a model to describe solnatide interaction with the C-terminal domain of the ENaCα subunit. This model may serve to guide future experiments to validate specific interactions with ENaCα and the design of new solnatide analogs with unexplored functionalities.

4.
J Clin Pharm Ther ; 47(7): 1070-1078, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1752593

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Nafamostat mesylate (NM) is used clinically in combination with antiviral drugs to treat coronavirus disease (COVID-19). One of the adverse events of NM is hyperkalaemia due to inhibition of the amiloride-sensitive sodium channels (ENaC). The incidence and risk factors for hyperkalaemia due to NM have been studied in patients with pancreatitis but not in COVID-19. COVID-19 can be associated with hypokalaemia or hyperkalaemia, and SARS-CoV-2 is thought to inhibit ENaC. Therefore, frequency and risk factors for hyperkalaemia due to NM may differ between COVID-19 and pancreatitis. Hyperkalaemia may worsen the respiratory condition of patients. The objective of this study was to determine the incidence and risk factors for hyperkalaemia in COVID-19 patients treated with favipiravir, dexamethasone and NM. METHODS: This retrospective study reviewed the records of hospitalized COVID-19 patients treated with favipiravir and dexamethasone, with or without NM, between March 2020 and January 2021. Multivariable logistic regression analysis was performed to identify the risk factors for hyperkalaemia. RESULTS AND DISCUSSION: Of 45 patients who received favipiravir and dexamethasone with NM for the treatment of COVID-19, 21 (47%) experienced hyperkalaemia. The duration of NM administration was a significant predictor of hyperkalaemia (odds ratio: 1.55, 95% confidence interval: 1.04-2.31, p = 0.031). The receiver-operating characteristic curve analysis determined that the cut-off value for predicting the number of days until the onset of hyperkalaemia was 6 days and the area under the curve was 0.707. WHAT IS NEW AND CONCLUSION: This study revealed that the incidence of hyperkalaemia is high in patients treated for COVID-19 with NM, and that the duration of NM administration is a key risk factor. When NM is administered for the treatment of COVID-19, it should be discontinued within 6 days to minimize the risk of hyperkalaemia.


Subject(s)
COVID-19 Drug Treatment , Hyperkalemia , Pancreatitis , Benzamidines , Dexamethasone , Guanidines , Humans , Hyperkalemia/chemically induced , Hyperkalemia/drug therapy , Hyperkalemia/epidemiology , Incidence , Retrospective Studies , Risk Factors , SARS-CoV-2
5.
Genomics Inform ; 19(4): e48, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1689861

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 µs (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

6.
Ann Med Surg (Lond) ; 65: 102261, 2021 May.
Article in English | MEDLINE | ID: covidwho-1157109
7.
Drug Discov Ther ; 14(5): 256-258, 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-895583

ABSTRACT

In the ongoing coronavirus diseases-2019 (COVID-19) crisis that caused immense suffering and deaths, the choice of therapy for the prevention and life-saving conditions must be based on sound scientific evidence. Uncertainty and apprehension are exacerbated in people using angiotensin-converting enzyme (ACE) inhibitors to control their comorbidities such as hypertension and diabetes. These drugs are reported to result in unfavorable outcome as they tend to increase the levels of ACE2 which mediates the entry of SARS-CoV-2. Amiloride, a prototypic inhibitor of epithelial sodium channels (ENaC) can be an ideal candidate for COVID-19 patients, given its ACE reducing and cytosolic pH increasing effects. Moreover, its potassium-sparing and anti-epileptic activities make it a promising alternative or a combinatorial agent.


Subject(s)
Amiloride/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Epithelial Sodium Channel Blockers/pharmacology , Pneumonia, Viral/drug therapy , Respiratory Mucosa/drug effects , Virus Internalization/drug effects , A549 Cells , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Down-Regulation , Host-Pathogen Interactions , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , Respiratory Mucosa/enzymology , Respiratory Mucosa/virology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL